Excerpt from "Modern Data Science with R" (2017)
https://mdsr-book.github.io/
copyright CRC Press

Appendix F

Setting up a database server

Setting up a local or remote database server is neither trivial nor difficult. In this chapter
we provide instructions as to how to set up a local database server on a computer that
you control. While everything that is done in this chapter can be accomplished on any
modern operating system, many tools for data science are designed for Unix-like operating
systems, and can be a challenge to set up on Windows. This is no exception. In particular,
comfort with the command line is a plus and the material presented here will make use of
shell commands. On Mac OS X and other Unix-like operating systems (e.g., Ubuntu), the
command line is acessible using a Terminal application. On Windows, some of these shell
commands might work at a DOS prompt, but others will not.! Unfortunately, providing
Windows-specific setup instructions is outside the scope of this book.

Three open-source SQL database systems are most commonly encountered. These in-
clude SQLite, MySQL, and PostgreSQL. While MySQL and PostgreSQL are full-featured
relational database systems that employ a strict client-server model, SQLite is a lightweight
program that runs only locally and requires no initial configuration. However, while SQLite
is certainly the easiest system to set up, it has has far fewer functions, lacks a caching
mechanism, and is not likely to perform as well under heavy usage. Please see the official
documentation for appropriate uses of SQLite for assistance with choosing the right SQL
implementation for your needs.

Both MySQL and PostgreSQL employ a client-server architecture. That is, there is a
server program running on a computer somewhere, and you can connect to that server from
any number of client programs—from either that same machine or over the Internet. Still,
even if you are running MySQL or PostgreSQL on your local machine, there are always two
parts: the client and the server. This chapter provides instructions for setting up the server
on a machine that you control-—which for most analysts, is your local machine.

F.1 SQLite

For SQLite, there is nothing to configure, but it must be installed. On Linux systems,
sqlite is likely already installed, but the source code, as well as pre-built binaries for Mac
OS X and Windows, are available at https://www.sqlite.org/download.html.

1Note that Cygwin provides a Unix-like shell for Windows.

489

https://en.wikipedia.org/wiki/Unix-like
Excerpt from "Modern Data Science with R" (2017)
https://mdsr-book.github.io/
copyright CRC Press

https://en.wikipedia.org/wiki/Unix_shell
https://www.sqlite.org/index.html
http://www.mysql.com
http://www.postgresql.org/
https://www.sqlite.org/whentouse.html
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://www.sqlite.org/download.html
https://en.wikipedia.org/wiki/Cygwin

490 APPENDIX F. SETTING UP A DATABASE SERVER

F.2 MySQL

We will focus on the use of MySQL (with brief mention of PostgreSQL in the next section).
The steps necessary to install a PostgreSQL server will follow similar logic, but the syntax
will be importantly different.

F.2.1 Installation

If you are running Mac OS X or a Linux-based operating system, then you probably already
have a MySQL server installed and running on your machine. You can check to see if this
is the case by running the following from your operating system’s shell (i.e., the command
line, in Mac OS X parlance, using the “Terminal” application).

ps aux | grep "mysql"

mysql 17218 4472 1620 7 Jan26 0:00 /bin/sh /usr/bin/mysqld_safe
mysql 17580 794460 127624 ? Jan26 1:25 /usr/sbin/mysqld

bbaumer 18977 16672 2880 pts/1 11:05 0:00 bash -c ps aux | grep "mysql"
bbaumer 18979 13692 2204 pts/1 11:05 0:00 grep mysql

If you see anything like the first line of this output (i.e., containing mysqld), then MySQL
is already running. (If you don’t see anything like that, then it is not. The last three lines
are all related to the ps command we just ran.)

If MySQL is not installed, then you can install it by downloading the relevant version
of the MySQL Community Server for your operating system at http://dev.mysql.com/
downloads/mysql/. If you run into trouble, please consult the instructions at https:
//dev.mysql.com/doc/refman/5.6/en/installing.html.

For Mac OS X, there are more specific instructions available. After installation, you will
want to install the Preference Pane, open it, check the box, and start the server.

It is also helpful to add the mysql binary directory to your PATH environment variable,
so you can launch msyql easily from the shell. To do this, execute the following command
in your shell:

export PATH=$PATH:/usr/local/mysql/bin
echo $PATH

You may have to modify the path to the mysql bin directory to suit your local setup.

F.2.2 Access

In most cases, the installation process will result in a server process being launched on your
machine, such as the one that we saw above in the output of the ps command. Once the
server is running, we need to configure it properly for our use. The full instructions for
post-installation provide great detail on this process. However, in our case, we will mostly
stick with the default configuration, so there are only a few things to check.

The most important thing is to gain access to the server. MySQL maintains a set of
user accounts just like your operating system. After installation, there is usually only one
account created: root. In order to create other accounts, we need to log into MySQL as
root. Please read the documentation on Securing the Initial MySQL Accounts for your
setup. From that documentation:

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/doc/refman/5.6/en/installing.html
https://dev.mysql.com/doc/refman/5.6/en/installing.html
https://dev.mysql.com/doc/refman/5.6/en/osx-installation-pkg.html
https://dev.mysql.com/doc/refman/5.6/en/postinstallation.html
https://dev.mysql.com/doc/refman/5.6/en/postinstallation.html
https://dev.mysql.com/doc/refman/5.6/en/default-privileges.html

F.2. MYSQL 491

Some accounts have the user name root. These are superuser accounts
that have all privileges and can do anything. If these root accounts have empty
passwords, anyone can connect to the MySQL server as root without a password
and be granted all privileges.

If this is your first time accessing MySQL, typing this into your shell might work:
mysql -u root

If you see an Access denied error, it means that the root MySQL user has a password,
but you did not supply it. You may have created a password during installation. If you
did, try:

mysql -u root -p

and then enter that password (it may well be blank). If you don’t know the root password,
try a few things that might be the password. If you can’t figure it out, contact your system
administrator or re-install MySQL.

You might—on Windows especially—get an error that says something about “command
not found.” This means that the program mysql is not accessible from your shell. You have
two options: 1) you can specify the full path to the MySQL application; or 2) you can
append your PATH variable to include the directory where the MySQL application is. The
second option is preferred, and is illustrated above.

If you don’t know where the application is, you can try to find it using the find program
provided by your operating system.

find / -name "mysql"

On Linux or Mac OS X, it is probably in /usr/bin/ or /usr/local/mysql/bin or some-
thing similar, and on Windows, it is probably in \Applications\MySQL Server 5.6\bin
or something similar. Once you find the path to the application and the password, you
should be able to log in. You will know when it works if you see a mysql prompt instead of
your usual one.

bbaumer@bbaumer-Precision-Tower-7810:"$ mysql -u root -p
Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 47

Server version: 5.5.44-Oubuntu0.14.04.1 (Ubuntu)

Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql>

492 APPENDIX F. SETTING UP A DATABASE SERVER

Once you are logged into MySQL, try running the following command at the mysql>
prompt (do not forget the trailing semi-colon):?

SELECT User, Host, Password FROM mysql.user;

This command will list the users on the MySQL server, their encrypted passwords, and
the hosts from which they are allowed to connect. Next, if you want to change the root
password, set it to something else (in this example mypass).

UPDATE mysql.user SET Password = PASSWORD('mypass') WHERE User = 'root';
FLUSH PRIVILEGES;

The most responsible thing to do now is to create a new account for yourself. You should
probably choose a different password than the one for the root user. Do this by running:

CREATE USER 'r-user'@'localhost' IDENTIFIED BY 'mypass';

It is important to understand that MySQL’s concept of users is really a {user, host}
pair. That is, the user ’bbaumer’@’localhost’ can have a different password and set of
privileges than the user ’bbaumer’@’%’. The former is only allowed to connect to the server
from the machine on which the server is running. (For most of you, that is your computer.)
The latter can connect from anywhere (%’ is a wildcard character). Obviously, the former
is more secure. Use the latter only if you want to connect to your MySQL database from
elsewhere.

You will also want to make yourself a superuser.

GRANT ALL PRIVILEGES ON *.* TO 'r-user'@'localhost' WITH GRANT OPTION;
Now, flush the privileges:
FLUSH PRIVILEGES;

Finally, log out by typing quit. You should now be able to log in to MySQL as yourself
by typing the following into your shell:

mysgql -u yourusername -p

Using an option file

A relatively safe and convenient method of connecting to MySQL servers (whether local or
remote) is by using an option file. This is a simple text file located at ~/.my.cnf that may
contain various connection parameters. Your entire file might look like this:

[client]
user=r-user
password="mypass"

These options will be read by MySQL automatically anytime you connect from a client
program. Thus, instead of having to type:

2NB: as of version 5.7, the mysql .user table include the field authentication_string instead of password.

https://dev.mysql.com/doc/refman/5.6/en/adding-users.html
http://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-6.html

F.3. POSTGRESQL 493

mysql -u yourusername -p

you should be automatically logged on with just mysql. Moreover, you can have dplyr read
your MySQL option file using the default.file argument (see Section F.4.3).

F.2.3 Running scripts from the command line

MySQL will run SQL scripts contained in a file via the command line client. If the file
myscript.sql is a text file containing MySQL commands, you can run it using the following
command from your shell:

mysql -u yourusername -p dbname < myscript.sql

The result of each command in that script will be displayed in the terminal. Please see
Section 13.3 for an example of this process in action.

F.3 PostgreSQL

Setting up a PostgreSQL server is logically analogous to the procedure demonstrated above
for MySQL. The default user in a PostgreSQL installation is postgres and the default pass-
word is either postgres or blank. Either way, you can log into the PostgreSQL command
line client—which is called psql—using the sudo command in your shell.

sudo -u postgres psql

This means: “Launch the psql program as if I was the user postgres.” If this is suc-
cessful, then you can create a new account for yourself from inside PostgreSQL. Here again,
the procedure is similar to the procedure demonstrated above for MySQL in section F.2.2.

You can list all of the PostgreSQL users by typing at your postgres prompt:

\du
You can change the password for the postgres user:
ALTER USER postgres PASSWORD 'some_pass';
Create a new account for yourself:
CREATE USER yourusername SUPERUSER CREATEDB PASSWORD 'some_pass';
Create a new database called airlines:
CREATE DATABASE airlines;
Quit the psql client by typing:
\q

Now that your user account is created, you can log out and back in with the shell
command:

http://www.postgresql.org/docs/current/static/sql-createdatabase.html

494 APPENDIX F. SETTING UP A DATABASE SERVER

psql -U yourusername -W

If this doesn’t work, it is probably because the client authentication is set to ident
instead of md5. Please see the documentation on client authentication for instructions on
how to correct this on your installation, or simply continue to use the sudo method described
above.

F.4 Connecting to SQL

There are many different options for connecting to and retrieving data from an SQL server.
In all cases, you will need to specify at least four pieces of information:

host the name of the SQL server. If you are running this server locally, that name is
localhost

dbname the name of the database on that server to which you want to connect (e.g.,
airlines)

user your username on the SQL server

password your password on the SQL server

F.4.1 The command line client

From the command line, the syntax is:

mysql -u username -p -h localhost dbname

After entering your password, this will bring you to an interactive MySQL session,
where you can bounce queries directly off of the server and see the results in your terminal.
This is often useful for debugging, because you can see the error messages directly, and
you have the full suite of MySQL directives at your disposal. On the other hand, it is
a fairly cumbersome route to database development, since you are limited to text-editing
capabilities of the command line.

Command-line access to PostgreSQL is provided via the psql program described above.

F.4.2 GUlIs

The MySQL Workbench is a graphical user interface (GUI) that can be useful for config-
uration and development. This software is available on Windows, Linux, and Mac OS X
(see https://www.mysql.com/products/workbench). The analogous tool for PostgreSQL
is pgAdmin, and it is similarly cross-platform. sqlitebrowser is another cross-platform
GUI for SQLite databases.

These programs provide full-featured access to the underlying database system, with
many helpful and easy-to-learn drop-down menus. We recommend developing queries and
databases in these programs, especially when learning SQL.

F.4.3 R and RStudio

The downside to the previous approaches is that you don’t actually capture the data re-
turned by your queries, so you can’t do anything with them. Using the GUIs, you can of
course save the results of any query to a CSV. But a more elegant solution is to pull the data

http://www.postgresql.org/docs/9.5/static/client-authentication.html
https://www.mysql.com/products/workbench
http://www.pgadmin.org/
http://sqlitebrowser.org/

F.4. CONNECTING TO SQL 495

directly into R. This functionality is provided by the RMySQL, RPostgreSQL, and RSQLite
packages. The DBI package provides a common interface to all three of the SQL back-ends
listed above, and the dplyr package provides a slicker interface to DBI. A schematic of these
dependencies is displayed in Figure F.1. We recommend using either the dplyr or the DBI
interfaces whenever possible, since they are implementation agnostic.

dplyr {DBI

[RPostgreSQL]

~

RSQLite

Figure F.1: Schematic of SQL-related R packages and their dependencies.

For most purposes (e.g., SELECT queries) there may be significant performance advan-
tages to using the dplyr interface. However, the functionality of this construction is limited
to SELECT queries. Thus, other SQL directives (e.g., EXPLAIN, INSERT, UPDATE, etc.) will
not work in the dplyr construction. This functionality must be accessed using DBI.

In what follows, we illustrate how to connect to a MySQL backend using dplyr and
DBI. However, the instructions for connecting to a PostgreSQL and SQLite are perfectly
analogous. First, you will need to load the relevant package.

library (RMySQL)

Using dplyr

To set up a connection to a MySQL database using dplyr, we must specify the four pa-
rameters outlined above, and save the resulting object using the src mysql() function.

library(dplyr)
db <- src_mysql(dbname = "airlines", host = "localhost",
user = "r-user", password = "mypass")

If you have a MySQL option file already set up (see Section F.2.2), then you can alter-
natively connect using the default.file argument. This enables you to connect without
having to type your password, or save it in plaintext in your R scripts.

db <- src_mysql(dbname = "airlines", host = "localhost",
default.file = "~/.my.cnf",
user = NULL, password = NULL)

Next, we can retrieve data using the tbl function and the sql() command.

496 APPENDIX F. SETTING UP A DATABASE SERVER
res <- tbl(db, sql("SELECT faa, name FROM airports"))
res

Source: query [?77 x 2]
Database: mysql 5.5.47-Oubuntu0.14.04.1 [r-user@localhost:/airlines]

faa name
<chr> <chr>
1 04G Lansdowne Airport
2 06A Moton Field Municipal Airport
3 06C Schaumburg Regional
4 06N Randall Airport
5 09J Jekyll Island Airport
6 0A9 Elizabethton Municipal Airport
7 0G6 Williams County Airport
8 0G7 Finger Lakes Regional Airport
9 OP2 Shoestring Aviation Airfield
10 089 Jefferson County Intl
... with more rows

Note that the resulting object has class tbl_sql.
class(res)
[1] "tbl_mysql" "tbl_sql" "tbl_lazy" "tbl"

Note also that the derived table is described as having an unknown (?7) number of
rows. This is because dplyr is smart (and lazy) about evaluation. It hasn’t actually pulled
all of the data into R. To force it to do so, use collect().

collect(res)

A tibble: 1,458 2

faa name
<chr> <chr>
1 04G Lansdowne Airport
2 06A Moton Field Municipal Airport
3 06C Schaumburg Regional
4 06N Randall Airport
5 09J Jekyll Island Airport
6 0A9 Elizabethton Municipal Airport
7 0G6 Williams County Airport
8 0G7 Finger Lakes Regional Airport
9 OP2 Shoestring Aviation Airfield
10 089 Jefferson County Intl
. with 1,448 more rows
Using DBI

For a closer connection to the SQL server, we use DBI. A connection object can be created
using the dbConnect() function, which works similarly to the dplyr connection we created
above.

F.4. CONNECTING TO SQL 497

library(DBI)
con <- dbConnect(MySQL(), dbname = "airlines", host = "localhost",
user = "r-user", password = "mypass")

Next, we use the dbGetQuery() function to send an SQL command to the server and
retrieve the results.

res <- dbGetQuery(con, "SELECT faa, name FROM airports")
head(res, 10)

faa name
104G Lansdowne Airport
2 06A Moton Field Municipal Airport
3 06C Schaumburg Regional
4 06N Randall Airport
5 09J Jekyll Island Airport
6 OA9 Elizabethton Municipal Airport
7 0G6 Williams County Airport
8 O0G7 Finger Lakes Regional Airport
9 O0OP2 Shoestring Aviation Airfield
10 089 Jefferson County Intl

Note that this time, the results are stored as a data.frame.

class(res)

[1] "data.frame"

Unlike the tbl() function from dplyr, dbGetQuery() can execute arbitrary SQL com-
mands, not just SELECT statements. So we can also run EXPLAIN, DESCRIBE, and SHOW
commands.

dbGetQuery(con, "EXPLAIN SELECT faa, name FROM airports")

id select_type table type possible_keys key key_len ref rows Extra
1 1 SIMPLE airports ALL <NA> <NA> <NA> <NA> 1458

dbGetQuery(con, "DESCRIBE airports")

Field Type Null Key Default Extra

1 faa varchar (3) NO PRI

2 name varchar(255) YES <NA>
3 lat decimal(10,7) VYES <NA>
4 lon decimal(10,7) YES <NA>
5 alt int(11) YES <NA>
6 tz smallint(4) YES <NA>
7 dst char(1) YES <NA>
8 city varchar(255) YES <NA>
9 country varchar(255) YES <NA>

dbGetQuery(con, "SHOW DATABASES")

498 APPENDIX F. SETTING UP A DATABASE SERVER

Database
1 information_schema
2 airlines
& imdb
4 lahman
5 math
6 retrosheet
7

yelp

Connection objects

Note that the db object that we created with dplyr is of class src_mysql.
db

src: mysql 5.5.47-Oubuntu0.14.04.1 [r-user@localhost:/airlines]
tbls: airports, carriers, flights, planes, summary, weather

class(db)

[1] "src_mysql" "src_sql" "src"

However, the con connection object we created with DBI is of class MySQL Connection.
con
<MySQLConnection:0, 1>
class(con)

[1] "MySQLConnection"
attr(, "package")
[1] "RMySQL"

Although they were created with all of the same information, they are not the same.
However, the db object contains an object functionally equivalent to con. Namely, db$con.

class(db$con)

[1] "MySQLConnection"
attr(, "package")
[1] "RMySQL"

Thus, once you have a created a connection to your database through dplyr, you can
use all of the DBI functions without having to create a new connection.

dbGetQuery (db$con, "SHOW TABLES")

Tables_in_airlines
1 airports
2 carriers

F.4. CONNECTING TO SQL 499

flights

planes
summary
weather

o O W

F.4.4 Load into SQLite database

A process similar to the one we exhibit in Section 13.3 can be used to create a SQLite
database, although in this case it is not even necessary to specify the table schema in
advance. Launch sqlite3 from the command line using the shell command:

sqlite3

Create a new database called babynames in the current directory using the .open com-
mand:

.open babynamesdata.sqlite3d

Next, set the .mode to csv, import the two tables, and exit.

.mode csv

.import babynames.csv babynames
.import births.csv births

.exit

This should result in an SQLite database file called babynamesdata.sqlite3 existing in
the current directory that contains two tables. We can connect to this database and query
it using dplyr.

db <- src_sqlite(path = "babynamesdata.sqlite3")
babynames <- tbl(db, "babynames")
babynames %> filter(name == "Benjamin")

Source: query [??7 x 5]
Database: sqlite 3.8.6 [babynamesdata.sqlite3]

year sex name n prop

<chr> <chr> <chr> <chr> <chr>
1 1976 F Benjamin 53 3.37186805943904e-05
2 1976 M Benjamin 10680 0.0065391571834601
3 1977 F Benjamin 63 3.83028784917178e-05
4 1977 M Benjamin 12112 0.00708409319279004
5 1978 F Benjamin 73 4.44137806835342e-05
6 1978 M Benjamin 11411 0.00667764880752091
7 1979 F Benjamin 79 4.58511127310548e-05
8 1979 M Benjamin 12516 0.00698620342042644
9 1980 F Benjamin 80 4.49415983928884e-05
10 1980 M Benjamin 13630 0.00734980487697031
... with more rows

	Preface
	List of Tables
	List of Figures
	I Introduction to Data Science
	Prologue: Why data science?
	What is data science?
	Case study: The evolution of sabermetrics
	Datasets
	Further resources

	Data visualization
	The 2012 federal election cycle
	Are these two groups different?
	Graphing variation
	Examining relationships among variables
	Networks

	Composing data graphics
	A taxonomy for data graphics
	Color
	Dissecting data graphics

	Importance of data graphics: Challenger
	Creating effective presentations
	The wider world of data visualization
	Further resources
	Exercises

	A grammar for graphics
	A grammar for data graphics
	Aesthetics
	Scale
	Guides
	Facets
	Layers

	Canonical data graphics in R
	Univariate displays
	Multivariate displays
	Maps
	Networks

	Extended example: Historical baby names
	Percentage of people alive today
	Most common women's names

	Further resources
	Exercises

	Data wrangling
	A grammar for data wrangling
	select() and filter()
	mutate() and rename()
	arrange()
	summarize() with group_by()

	Extended example: Ben's time with the Mets
	Combining multiple tables
	inner_join()
	left_join()

	Extended example: Manny Ramirez
	Further resources
	Exercises

	Tidy data and iteration
	Tidy data
	Motivation
	What are tidy data?

	Reshaping data
	Data verbs for converting wide to narrow and vice versa
	Spreading
	Gathering
	Example: Gender-neutral names

	Naming conventions
	Automation and iteration
	Vectorized operations
	The apply() family of functions
	Iteration over subgroups with dplyr::do()
	Iteration with mosaic::do

	Data intake
	Data-table friendly formats
	APIs
	Cleaning data
	Example: Japanese nuclear reactors

	Further resources
	Exercises

	Professional Ethics
	Introduction
	Truthful falsehoods
	Some settings for professional ethics
	The chief executive officer
	Employment discrimination
	Data scraping
	Reproducible spreadsheet analysis
	Drug dangers
	Legal negotiations

	Some principles to guide ethical action
	Applying the precepts

	Data and disclosure
	Reidentification and disclosure avoidance
	Safe data storage
	Data scraping and terms of use

	Reproducibility
	Example: Erroneous data merging

	Professional guidelines for ethical conduct
	Ethics, collectively
	Further resources
	Exercises

	II Statistics and Modeling
	Statistical foundations
	Samples and populations
	Sample statistics
	The bootstrap
	Outliers
	Statistical models: Explaining variation
	Confounding and accounting for other factors
	The perils of p-values
	Further resources
	Exercises

	Statistical learning and predictive analytics
	Supervised learning
	Classifiers
	Decision trees
	Example: High-earners in the 1994 United States Census
	Tuning parameters
	Random forests
	Nearest neighbor
	Naïve Bayes
	Artificial neural networks

	Ensemble methods
	Evaluating models
	Cross-validation
	Measuring prediction error
	Confusion matrix
	ROC curves
	Bias-variance trade-off
	Example: Evaluation of income models

	Extended example: Who has diabetes?
	Regularization
	Further resources
	Exercises

	Unsupervised learning
	Clustering
	Hierarchical clustering
	k-means

	Dimension reduction
	Intuitive approaches
	Singular value decomposition

	Further resources
	Exercises

	Simulation
	Reasoning in reverse
	Extended example: Grouping cancers
	Randomizing functions
	Simulating variability
	The partially planned rendezvous
	The jobs report
	Restaurant health and sanitation grades

	Simulating a complex system
	Random networks
	Key principles of simulation
	Further resources
	Exercises

	III Topics in Data Science
	Interactive data graphics
	Rich Web content using D3.js and htmlwidgets
	Leaflet
	Plot.ly
	DataTables
	dygraphs
	streamgraphs

	Dynamic visualization using ggvis
	Interactive Web apps with Shiny
	Further customization
	Extended example: Hot dog eating
	Further resources
	Exercises

	Database querying using SQL
	From dplyr to SQL
	Flat-file databases
	The SQL universe
	The SQL data manipulation language
	SELECT...FROM
	WHERE
	GROUP BY
	ORDER BY
	HAVING
	LIMIT
	JOIN
	UNION
	Subqueries

	Extended example: FiveThirtyEight flights
	SQL vs. R
	Further resources
	Exercises

	Database administration
	Constructing efficient SQL databases
	Creating new databases
	CREATE TABLE
	Keys
	Indices
	EXPLAIN
	Partitioning

	Changing SQL data
	UPDATE
	INSERT
	LOAD DATA

	Extended example: Building a database
	Extract
	Transform
	Load into MySQL database

	Scalability
	Further resources
	Exercises

	Working with spatial data
	Motivation: What's so great about spatial data?
	Spatial data structures
	Making maps
	Static maps with ggmap
	Projections
	Geocoding, routes, and distances
	Dynamic maps with leaflet

	Extended example: Congressional districts
	Election results
	Congressional districts
	Putting it all together
	Using ggmap
	Using leaflet

	Effective maps: How (not) to lie
	Extended example: Historical airline route maps
	Using ggmap
	Using leaflet

	Projecting polygons
	Playing well with others
	Further resources
	Exercises

	Text as data
	Tools for working with text
	Regular expressions using Macbeth
	Example: Life and death in Macbeth

	Analyzing textual data
	Corpora
	Word clouds
	Document term matrices

	Ingesting text
	Example: Scraping the songs of the Beatles
	Scraping data from Twitter

	Further resources
	Exercises

	Network science
	Introduction to network science
	Definitions
	A brief history of network science

	Extended example: Six degrees of Kristen Stewart
	Collecting Hollywood data
	Building the Hollywood network
	Building a Kristen Stewart oracle

	PageRank
	Extended example: 1996 men's college basketball
	Further resources
	Exercises

	Epilogue: Towards ``big data"
	Notions of big data
	Tools for bigger data
	Data and memory structures for big data
	Compilation
	Parallel and distributed computing
	Alternatives to SQL

	Alternatives to R
	Closing thoughts
	Further resources

	IV Appendices
	Packages used in this book
	The mdsr package
	The etl package suite
	Other packages
	Further resources

	Introduction to R and RStudio
	Installation
	Installation under Windows
	Installation under Mac OS X
	Installation under Linux
	RStudio

	Running RStudio and sample session
	Learning R
	Getting help
	swirl

	Fundamental structures and objects
	Objects and vectors
	Operators
	Lists
	Matrices
	Dataframes
	Attributes and classes
	Options
	Functions

	Add-ons: Packages
	Introduction to packages
	CRAN task views
	Session information
	Packages and name conflicts
	Maintaining packages
	Installed libraries and packages

	Further resources
	Exercises

	Algorithmic thinking
	Introduction
	Simple example
	Extended example: Law of large numbers
	Non-standard evaluation
	Debugging and defensive coding
	Further resources
	Exercises

	Reproducible analysis and workflow
	Scriptable statistical computing
	Reproducible analysis with R Markdown
	Projects and version control
	Further resources
	Exercises

	Regression modeling
	Simple linear regression
	Motivating example: Modeling usage of a rail trail
	Model visualization
	Measuring the strength of fit
	Categorical explanatory variables

	Multiple regression
	Parallel slopes: Multiple regression with a categoricalvariable
	Parallel planes: Multiple regression with a secondquantitative variable
	Non-parallel slopes: Multiple regression with interaction
	Modelling non-linear relationships

	Inference for regression
	Assumptions underlying regression
	Logistic regression
	Further resources
	Exercises

	Setting up a database server
	SQLite
	MySQL
	Installation
	Access
	Running scripts from the command line

	PostgreSQL
	Connecting to SQL
	The command line client
	GUIs
	R and RStudio
	Load into SQLite database

	Bibliography
	Indices
	Subject index
	R index

