
Appendix E

Regression modeling

Regression analysis is a powerful and flexible framework that allows an analyst to model
an outcome (the response variable) as a function of one or more explanatory variables (or
predictors). Regression forms the basis of many important statistical models described in
Chapters 7 and 8. This appendix provides a brief review of linear and logistic regression
models, beginning with a single predictor, then extending to multiple predictors.

E.1 Simple linear regression

Linear regression can help us understand how values of a quantitative (numerical) outcome
(or response) are associated with values of a quantitative explanatory (or predictor) vari-
able. This technique is often applied in two ways: to generate predicted values or to make
inferences regarding associations in the dataset.

In some disciplines the outcome is called the dependent variable and the predictor the
independent variable. We avoid such usage since the words dependent and independent
have many meanings in statistics.

A simple linear regression model for an outcome y as a function of a predictor x takes
the form:

y
i

= �0 + �1xi

+ ✏
i

, for i = 1, . . . , n ,

where n represents the number of observations (rows) in the data set. For this model, �0

is the population parameter corresponding to the intercept (i.e., the predicted value when
x = 0) and �1 is the true (population) slope coe�cient (i.e., the predicted increase in y for
a unit increase in x). The ✏

i

’s are the errors (these are assumed to be random noise with
mean 0).

We almost never know the true values of the population parameters �0 and �1, but we
estimate them using data from our sample. The lm() function finds the “best” coe�cients
�̂0 and �̂1 where the the fitted values (or expected values) are given by ŷ

i

= �̂0 + �̂1xi

.
What is left over is captured by the residuals (✏

i

= y
i

� ŷ
i

). The model almost never fits
perfectly—if it did there would be no need for a model.

The best fitting regression line is usually determined by a least squares criteria that
minimizes the sum of the squared residuals. The least squares regression line (defined by
the values of �̂0 and �̂1) is unique.
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E.1.1 Motivating example: Modeling usage of a rail trail

The Pioneer Valley Planning Commission (PVPC) collected data north of Chestnut Street
in Florence, Massachusetts for a ninety day period. Data collectors set up a laser sensor
that recorded when a rail-trail user passed the data collection station.

glimpse(RailTrail)

Observations: 90
Variables: 10
$ hightemp <int> 83, 73, 74, 95, 44, 69, 66, 66, 80, 79, 78, 65, 41,...
$ lowtemp <int> 50, 49, 52, 61, 52, 54, 39, 38, 55, 45, 55, 48, 49,...
$ avgtemp <dbl> 66.5, 61.0, 63.0, 78.0, 48.0, 61.5, 52.5, 52.0, 67....
$ spring <int> 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, ...
$ summer <int> 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, ...
$ fall <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, ...
$ cloudcover <dbl> 7.6, 6.3, 7.5, 2.6, 10.0, 6.6, 2.4, 0.0, 3.8, 4.1, ...
$ precip <dbl> 0.00, 0.29, 0.32, 0.00, 0.14, 0.02, 0.00, 0.00, 0.0...
$ volume <int> 501, 419, 397, 385, 200, 375, 417, 629, 533, 547, 4...
$ weekday <fctr> 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0,...

The PVPC wants to understand the relationship between daily ridership (i.e., the num-
ber of riders and walkers who use the bike path on any given day) and a collection of
explanatory variables, including the temperature, rainfall, cloud cover, and day of the week.

In a simple linear regression model, there is a single quantitative explanatory variable.
It seems reasonable that the high temperature for the day (hightemp, measured in degrees
Fahrenheit) might be related to ridership, so we will explore that first. Figure E.1 shows a
scatterplot between ridership (volume) and high temperature (hightemp), with the simple
linear regression line overlaid. The fitted coe�cients are shown below by providing a formula
to the lm() function.

mod <- lm(volume ~ hightemp, data = RailTrail)
coef(mod)

(Intercept) hightemp
-17.079 5.702

The first coe�cient is �̂0, the estimated y-intercept. The interpretation is that if the
high temperature was 0 degrees Fahrenheit, then the estimated ridership would be about -17
riders. This is doubly non-sensical in this context, since it is impossible to have a negative
number of riders and this represents a substantial extrapolation to far colder temperatures
than are present in the data set (recall the Challenger discussion from Chapter 2). It turns
out that the monitoring equipment didn’t work when it got too cold, so values for those
days are unavailable.

Pro Tip: In this case, it is not appropriate to simply multiply the average number of
users on the observed days by the number of days in a year, since cold days that are likely
to have fewer trail users are excluded due to instrumentation issues. Such missing data can
lead to selection bias.

The second coe�cient (the slope) is usually more interesting. This coe�cient (�̂1) is
interpreted as the predicted increase in trail users for each additional degree in temperature.



E.1. SIMPLE LINEAR REGRESSION 467

plotModel(mod, system = "ggplot2")
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Figure E.1: Scatterplot of number of trail crossings as a function of highest daily tempera-
ture (in degrees Fahrenheit).

We expect to see about 5.7 additional riders use the rail trail on a day that is one degree
warmer than another day.

E.1.2 Model visualization

Figure E.1 allows us to visualize our model in the data space. How does our model compare
to a null model? That is, how do we know that our model is useful?

In Figure E.2, we compare the least squares regression line (right) with the null model
that simply returns the average for every input (left). That is, on the left, the average
temperature of the day is ignored. The model simply predicts an average ridership every
day, regardless of the temperature. However, on the right, the model takes the average
ridership into account, and accordingly makes a di↵erent prediction for each input value.

Obviously, the regression model works better than the null model (that forces the slope
to be zero), since it is more flexible. But how much better?

E.1.3 Measuring the strength of fit

The correlation coe�cient, r, is used to quantify the strength of the linear relationship
between two variables. We can quantify the proportion of variation in the response variable
(y) that is explained by the model in a similar fashion. This quantity is called the coe�cient
of determination and is denoted R2. It is a common measure of goodness-of-fit for regression
models. Like any proportion, R2 is always between 0 and 1. For simple linear regression
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Figure E.2: At left, the model based on the overall average high temperature. At right, the
simple linear regression model.

(one explanatory variable), R2 = r2. The definition of R2 is given by:

R2 = 1� SSE

SST
=

SSM

SST

= 1�
P

n

i=1(yi � ŷ
i

)2P
n

i=1(yi � ȳ)2

= 1� SSE

(n� 1)V ar(y)
,

where SSE is the sum of the squared residuals, SSM is the sum of the squares attributed
to the model, and SST is the total sum of the squares. Let’s calculate these values for the
rail trail example.

n <- nrow(RailTrail)
SST <- var(~volume, data = RailTrail) * (n - 1)
SSE <- var(residuals(mod)) * (n - 1)
1 - SSE / SST

[1] 0.3394

rsquared(mod)

[1] 0.3394

In Figure E.2, the null model on the left has an R2 of 0, because ŷ
i

= ȳ for all i, and
so SSE = SST . On the other hand, the R2 of the regression model on the right is 0.3394.
We say that the regression model based on average daily temperature explained about 34%
of the variation in daily ridership.
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E.1.4 Categorical explanatory variables

Suppose that instead of using temperature as our explanatory variable for ridership on the
rail trail, we only considered whether it was a weekday or not a weekday (e.g., weekend or
holiday). The indicator variable weekday is binary (or dichotomous) in that it only takes
on the values 0 and 1. (Such variables are sometimes called indicator variables or more
pejoratively dummy variables.) This new linear regression model has the form:

\volume = �̂0 + �̂1 · weekday ,

where the fitted coe�cients are given below.

coef(lm(volume ~ weekday, data = RailTrail))

(Intercept) weekday1
430.71 -80.29

Note that these coe�cients could have been calculated from the means of the two groups
(since the regression model has only two possible predicted values). The average ridership
on weekdays is 350.4 while the average on non-weekdays is 430.7.

mean(volume ~ weekday, data = RailTrail)

0 1
430.7 350.4

diff(mean(volume ~ weekday, data = RailTrail))

1
-80.29

In the coe�cients listed above, the weekday1 variable corresponds to rows in which the
value of the weekday variable was 1 (i.e., weekdays). Because this value is negative, our
interpretation is that 80 fewer riders are expected on a weekday as opposed to a weekend
or holiday.

To improve the readability of the output we can create a new variable with more
mnemonic values.

RailTrail <- RailTrail %>%
mutate(day = ifelse(weekday == 1, "weekday", "weekend/holiday"))

Pro Tip: Care was needed to recode the weekday variable because it was a factor. Avoid
the use of factors unless they are needed.

coef(lm(volume ~ day, data = RailTrail))

(Intercept) dayweekend/holiday
350.42 80.29

The model coe�cients have changed (although they still provide the same interpreta-
tion). By default, the lm() function will pick the alphabetically lowest value of the cate-
gorical predictor as the reference group and create indicators for the other levels (in this
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case dayweekend/holiday). As a result the intercept is now the predicted number of trail
crossings on a weekday. In either formulation, the interpretation of the model remains the
same: On a weekday, 80 fewer riders are expected than on a weekend or holiday.

E.2 Multiple regression

Multiple regression is a natural extension of simple linear regression that incorporates mul-
tiple explanatory (or predictor) variables. It has the general form:

y = �0 + �1x1 + �2x2 + · · ·+ �
p

x
p

+ ✏, where ✏ ⇠ N(0,�
✏

) .

The estimated coe�cients (i.e., �̂
i

’s) are now interpreted as “conditional on” the other
variables—each �

i

reflects the predicted change in y associated with a one-unit increase
in x

i

, conditional upon the rest of the x
i

’s. This type of model can help to disentangle
more complex relationships between three or more variables. The value of R2 from a
multiple regression model has the same interpretation as before: the proportion of variability
explained by the model.

Pro Tip: Interpreting conditional regression parameters can be challenging. The analyst
needs to ensure that comparisons that hold other factors constant do not involve extrapo-
lations beyond the observed data.

E.2.1 Parallel slopes: Multiple regression with a categorical
variable

Consider first the case where x2 is an indicator variable that can only be 0 or 1 (e.g.,
weekday). Then,

ŷ = �̂0 + �̂1x1 + �̂2x2 .

In the case where x1 is quantitative but x2 is an indicator variable, we have:

For weekends, ŷ|
x1,x2=0 = �̂0 + �̂1x1

For weekdays, ŷ|
x1,x2=1 = �̂0 + �̂1x1 + �̂2 · 1

=
⇣
�̂0 + �̂2

⌘
+ �̂1x1 .

This is called a parallel slopes model (see Figure E.3), since the predicted values of the
model take the geometric shape of two parallel lines with slope �̂1: one with y-intercept �̂0

for weekends, and another with y-intercept �̂0 + �̂2 for weekdays.

mod_parallel <- lm(volume ~ hightemp + weekday, data = RailTrail)
coef(mod_parallel)

(Intercept) hightemp weekday1
42.807 5.348 -51.553

rsquared(mod_parallel)

[1] 0.3735
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Figure E.3: Visualization of parallel slopes model for the rail trail data.

plotModel(mod_parallel, system = "ggplot2")

E.2.2 Parallel planes: Multiple regression with a second
quantitative variable

If x2 is a quantitative variable, then we have:

ŷ = �̂0 + �̂1x1 + �̂2x2 .

Notice that our model is no longer a line, rather it is a plane that exists in three dimensions.
Now suppose that we want to improve our model for ridership by considering not only

the average temperature, but also the amount of precipitation (rain or snow, measured in
inches). We can do this in R by simply adding this variable to our regression model.

mod_planes <- lm(volume ~ hightemp + precip, data = RailTrail)
coef(mod_planes)

(Intercept) hightemp precip
-31.520 6.118 -153.261

Note that the coe�cient on hightemp (6.1 riders per degree) has changed from its value
in the simple linear regression model (5.7 riders per degree). This is due to the moderating
e↵ect of precipitation. Our interpretation is that for each additional degree in temperature,
we expect an additional 6.1 riders on the rail trail, after controlling for the amount of
precipitation.

Pro Tip: Note that since the median precipitation on days when there was precipitation
was only 0.15 inches, a predicted change for an additional inch may be misleading. It may
be better to report a predicted di↵erence of 0.15 additional inches or replace the continuous
term in the model with a dichotomous indicator of any precipitation.
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As you can imagine, the e↵ect of precipitation is strong—some people may be less likely
to bike or walk in the rain. Thus, even after controlling for temperature, an inch of rainfall
is associated with a drop in ridership of about 153.

mod_p_planes <- lm(volume ~ hightemp + precip + weekday, data = RailTrail)
coef(mod_p_planes)

(Intercept) hightemp precip weekday1
19.319 5.801 -145.609 -43.144

If we added all three explanatory variables to the model we would have parallel planes.

E.2.3 Non-parallel slopes: Multiple regression with interaction

Let’s return to a model that includes weekday and hightemp as predictors. What if the
parallel slopes model doesn’t fit well? Adding an additional term into the model can make
it more flexible and allow there to be a di↵erent slope on the two di↵erent types of days:

ŷ = �̂0 + �̂1x1 + �̂2x2 + �̂3x1x2 .

We then have:

For weekends, ŷ|
x1,x2=0 = �̂0 + �̂1x1

For weekdays, ŷ|
x1,x2=1 = �̂0 + �̂1x1 + �̂2 · 1 + �̂3 · x1

=
⇣
�̂0 + �̂2

⌘
+
⇣
�̂1 + �̂3

⌘
x1 .

This is called an interaction model (see Figure E.4). The predicted values of the model
take the geometric shape of two non-parallel lines with di↵erent slopes.

mod_interact <- lm(volume ~ hightemp + weekday + hightemp * weekday,
data = RailTrail)

coef(mod_interact)

(Intercept) hightemp weekday1 hightemp:weekday1
135.153 4.075 -186.377 1.906

rsquared(mod_interact)

[1] 0.3816

plotModel(mod_interact, system = "ggplot2")

We see that the slope on weekdays is about two riders per degree higher than on weekends
and holidays. This may indicate that trail users on weekends and holidays are less concerned
about the temperature than on weekdays.

E.2.4 Modelling non-linear relationships

A linear model with a single parameter fits well in many situations but is not appropriate in
others. Consider modeling height (in centimeters) as a function of age (in years) using data
from a subset of female subjects included in the National Health and Nutrition Examination
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Figure E.4: Visualization of interaction model for the rail trail data.

Study (from the NHANES package) with a linear term. Another approach uses a smoother
instead of a linear model. Unlike the straight line, the smoother can bend to better fit the
points when modeling the functional form of a relationship (see Figure E.5).

library(NHANES)
NHANES %>%
sample(300) %>%
filter(Gender == "female") %>%

ggplot(aes(x = Age, y = Height)) +
geom_point() +
stat_smooth(method = lm, se = 0) +
stat_smooth(method = loess, se = 0, color = "green") +
xlab("Age (in years)") + ylab("Height (in cm)")

The fit of the linear model (denoted in blue) is poor: A straight line does not account
for the dramatic increases in height during puberty to young adulthood or for the gradual
decline in height for older subjects. The smoother (in green) does a much better job of
describing the functional form.

The improved fit does come with a cost. Compare the results for linear and smoothed
models in Figure E.6. Here the functional form of the relationship between high temperature
and volume of trail use is closer to linear (with some deviation for warmer temperatures).

ggplot(data = RailTrail, aes(x = hightemp, y = volume)) +
geom_point() +
stat_smooth(method = lm) + stat_smooth(method = loess, color = "green") +
ylab("Number of trail crossings") + xlab("High temperature (F)")

The width of the confidence bands for the smoother tend to be wider than that for the
linear model. This is the cost of the additional flexibility in modeling. The other cost is
interpretation: It is more complicated to explain the results from the smoother than to
interpret a slope coe�cient.
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Figure E.5: Scatterplot of height as a function of age with superimposed linear model (blue)
and smoother (green).

E.3 Inference for regression

Thus far, we have fit several models and interpreted their estimated coe�cients. However,
with the exception of the confidence bands in Figure E.6, we have only made statements
about the estimated coe�cients (i.e., the �̂’s)—we have made no statements about the true
coe�cients (i.e., the �’s), the values of which of course remain unknown.

However, we can use our understanding of the t-distribution to make inferences about
the true value of regression coe�cients. In particular, we can test a hypothesis about �1

(most commonly that it is equal to zero) and find a confidence interval (range of plausible
values) for it.

msummary(mod_p_planes)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.319 60.339 0.32 0.74961
hightemp 5.801 0.799 7.26 1.6e-10 ***
precip -145.609 38.894 -3.74 0.00033 ***
weekday1 -43.144 22.194 -1.94 0.05517 .

Residual standard error: 95.2 on 86 degrees of freedom
Multiple R-squared: 0.461,Adjusted R-squared: 0.443
F-statistic: 24.6 on 3 and 86 DF, p-value: 1.44e-11

In the output above, the p-value that is associated with the hightemp coe�cient is
displayed as 1.6e-10 (or nearly zero). That is, if the true coe�cient (�1) was in fact zero, then
the probability of observing an association on ridership due to average temperature as large
or larger than the one we actually observed in the data, after controlling for precipitation
and day of the week, is essentially zero. This suggests that the hypothesis that �1 was
in fact zero is dubious based on these data. Perhaps there is a real association between
ridership and average temperature.
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Figure E.6: Scatterplot of volume as a function of high temperature with superimposed
linear and smooth models for the rail trail data.

Pro Tip: Very small p-values should be rounded to the nearest 0.0001. We suggest
reporting this p-value as p < 0.0001.

Another way of thinking about this process is to form a confidence interval around our
estimate of the slope coe�cient �̂1. Here we can say with 95% confidence that the value of
the true coe�cient �1 is between 4.21 and 7.39 riders per degree. That this interval does
not contain zero confirms the previous hypothesis test.

confint(mod_p_planes)

2.5 % 97.5 %
(Intercept) -100.631 139.2684
hightemp 4.213 7.3881
precip -222.927 -68.2909
weekday1 -87.265 0.9764

E.4 Assumptions underlying regression

The inferences we made above were predicated upon our assumption that the slope follows a
t-distribution. This follows from the assumption that the errors follow a normal distribution
(with mean 0 and standard deviation �

✏

, for some constant �
✏

). Inferences from the model
are only valid if the following assumptions hold:

Linearity: The functional form of the relationship between the predictors and the outcome
follows a linear combination of regression parameters that are correctly specified (this
assumption can be verified by bivariate graphical displays).

Independence: Are the errors uncorrelated? Or do they follow a pattern (perhaps over
time or within clusters of subjects)?



476 APPENDIX E. REGRESSION MODELING

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−200

−100

0

100

200

200 300 400 500
Fitted Values

R
es

id
ua

l

Residuals vs Fitted

Figure E.7: Assessing linearity using a scatterplot of residuals versus fitted (predicted)
values.

Normality of residuals: Do the residuals follow a distribution that is approximately nor-
mal? This assumption can be verified using univariate displays.

Equal variance of residuals: Is the variance in the residuals constant across the explana-
tory variables (homoscedastic errors)? Or does the variance in the residuals depend
on the value of one or more of the explanatory variables (heteroscedastic errors)? This
assumption can be verified using residual diagnostics.

These conditions are sometimes called the “LINE” assumptions. All but the independence
assumption can be assessed using diagnostic plots.

How might we assess the mod p planes model? Figure E.7 displays a scatterplot of
residuals versus fitted (predicted) values. As we observed in Figure E.6, the number of
crossings does not increase as much for warm temperatures as it does for more moderate
ones. We may need to consider a more sophisticated model with a more complex model for
temperature.

mplot(mod_p_planes, which = 1, system = "ggplot2")

Figure E.8 displays the quantile–quantile plot for the residuals from the regression model.
The plot deviates from the straight line: This indicates that the residuals have heavier tails
than a normal distribution.

mplot(mod_p_planes, which = 2, system = "ggplot2")

Figure E.9 displays the scale–location plot for the residuals from the model: The results
indicate that there is evidence of heteroscedasticity (the variance of the residuals increases
as a function of predicted value).

mplot(mod_p_planes, which = 3, system = "ggplot2")

When performing model diagnostics, it is important to identify any outliers and under-
stand their role in determining the regression coe�cients.
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Figure E.8: Assessing normality assumption using a Q–Q plot.

• An outlier is an observation that doesn’t seem to fit the general pattern of the data.

• An observation with an extreme value of the explanatory variable is a point of high
leverage.

• A high leverage point that exerts disproportionate influence on the slope of the re-
gression line is an influential point.

Figure E.10 displays the values for Cook’s distance (a common measure of influential
points in a regression model).

mplot(mod_p_planes, which = 4, system = "ggplot2")

We use the augment() function from the broom package to calculate the value of this
statistic and identify the most extreme Cook’s distance.

library(broom)
augment(mod_p_planes) %>%
filter(.cooksd > 0.4)

volume hightemp precip weekday .fitted .se.fit .resid .hat .sigma
1 388 84 1.49 1 246.5 54.84 141.5 0.3321 93.87
.cooksd .std.resid

1 0.4116 1.82

The outlier corresponds to a day with nearly one and a half inches of rain (the most
recorded in the dataset) and a high temperature of 84 degrees.

E.5 Logistic regression

Our previous examples had quantitative (or continuous) outcomes. What happens when
we are interested in modeling a dichotomous outcome? For example, we might model the
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Figure E.9: Assessing equal variance using a scale–location plot.

probability of developing diabetes as a function of age and BMI (we explored this question
further in Chapter 8). Figure E.11 displays the scatterplot of diabetes status as a function
of age, while Figure E.12 displays the scatterplot of diabetes as a function of BMI (body
mass index). Note that each subject can either have diabetes or not, so all of the points are
displayed at zero or one on the y-axis.

NHANES <- NHANES %>%
mutate(has_diabetes = as.numeric(Diabetes == "Yes"))

log_plot <- ggplot(data = NHANES, aes(x = Age, y = has_diabetes)) +
geom_jitter(alpha = 0.1, height = 0.05) +
geom_smooth(method = "glm", method.args = list(family = "binomial")) +
ylab("Diabetes status")

Which variable is more important: Age or BMI? We can use a logistic regression model
to model the probability of diabetes as a function of both predictors.

logreg <- glm(has_diabetes ~ BMI + Age, family = "binomial", data = NHANES)
msummary(logreg)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.08029 0.24445 -33.1 <2e-16 ***
BMI 0.09433 0.00552 17.1 <2e-16 ***
Age 0.05728 0.00249 23.0 <2e-16 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5263.8 on 9628 degrees of freedom
Residual deviance: 4146.0 on 9626 degrees of freedom
(371 observations deleted due to missingness)

AIC: 4152
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Figure E.10: Cook’s distance for rail trail model.

Number of Fisher Scoring iterations: 7

The answer is that both are important (both are statistically significant predictors).
To interpret the findings, we might consider a visual display of predicted probabilities as
displayed in Figure E.13 (compare with Figure 8.11).

ages <- range(~Age, data = NHANES)
bmis <- range(~BMI, data = NHANES, na.rm = TRUE)
res <- 100
fake_grid <- expand.grid(
Age = seq(from = ages[1], to = ages[2], length.out = res),
BMI = seq(from = bmis[1], to = bmis[2], length.out = res)

)
y_hats <- fake_grid %>%
mutate(y_hat = predict(logreg, newdata = ., type = "response"))

ggplot(data = NHANES, aes(x = Age, y = BMI)) +
geom_tile(data = y_hats, aes(fill = y_hat), color = NA) +
geom_count(aes(color = as.factor(has_diabetes)), alpha = 0.4) +
scale_fill_gradient(low = "white", high = "dodgerblue") +
scale_color_manual("Diabetes", values = c("gray", "gold")) +
scale_size(range = c(0, 2))

We see that very few young adults have diabetes, even if they have moderately high BMI
scores. As we look at older subjects while holding BMI fixed, the probability of diabetes
increases.
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log_plot + xlab("Age (in years)")
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Figure E.11: Scatterplot of diabetes as a function of age with superimposed smoother.

log_plot + aes(x = BMI) + xlab("BMI (body mass index)")
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Figure E.12: Scatterplot of diabetes as a function of BMI with superimposed smoother.
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Figure E.13: Predicted probabilities for diabetes as a function of BMI and age.

E.6 Further resources

Regression is described in many books. An introduction is found in most introductory
statistics textbooks, including Open Intro Statistics [63]. For a deeper but still accessible
treatment, we suggest [45]. Modern texts by James et al. [121] and Hastie, Tibshirani,
and Friedman [98] also cover regression from a modeling and machine learning perspective.
Hoaglin [103] details how conditional regression parameters should be interpreted. Cook
[59] reviews regression diagnostics. An accessible introduction to smoothing can be found
in Ruppert et al. [182].



482 APPENDIX E. REGRESSION MODELING

E.7 Exercises

Exercise E.1

In the HELP (Health Evaluation and Linkage to Primary Care) study, investigators were
interested in determining predictors of severe depressive symptoms (measured by the Center
for Epidemiologic Studies—Depression scale, cesd) amongst a cohort enrolled at a substance
abuse treatment facility. These predictors include substance of abuse (alcohol, cocaine, or
heroin), mcs (a measure of mental well-being), gender, and housing status (housed or home-
less). Answer the following questions regarding the following multiple regression model.

library(mdsr)
fm <- lm(cesd ~ substance + mcs + sex + homeless, data = HELPrct)
msummary(fm)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 57.7794 1.4664 39.40 <2e-16 ***
substancecocaine -3.5406 1.0101 -3.51 0.0005 ***
substanceheroin -1.6818 1.0731 -1.57 0.1178
mcs -0.6407 0.0338 -18.97 <2e-16 ***
sexmale -3.3239 1.0075 -3.30 0.0010 **
homelesshoused -0.8327 0.8686 -0.96 0.3383

Residual standard error: 8.97 on 447 degrees of freedom
Multiple R-squared: 0.492,Adjusted R-squared: 0.486
F-statistic: 86.4 on 5 and 447 DF, p-value: <2e-16

confint(fm)

2.5 % 97.5 %
(Intercept) 54.898 60.661
substancecocaine -5.526 -1.555
substanceheroin -3.791 0.427
mcs -0.707 -0.574
sexmale -5.304 -1.344
homelesshoused -2.540 0.874

1. Write out the linear model.

2. Calculate the predicted CESD for a female homeless cocaine-involved subject with an
MCS score of 20.

3. Interpret the 95% confidence interval for the substancecocaine coe�cient.

4. Make a conclusion and summarize the results of a test of the homeless parameter.

5. Report and interpret the R2 (coe�cient of determination) for this model.

6. What do we conclude about the distribution of the residuals?

7. What do we conclude about the relationship between the fitted values and the resid-
uals?

8. What do we conclude about the relationship between the MCS score and the residuals?



E.7. EXERCISES 483

9. What other things can we learn from the residual diagnostics?

10. Which observations should we flag for further study?

Exercise E.2

Investigators in the HELP (Health Evaluation and Linkage to Primary Care) study were
interested in modeling predictors of being homeless (one or more nights spent on the street
or in a shelter in the past six months vs. housed) using baseline data from the clinical trial.
Fit and interpret a parsimonious model that would help the investigators identify predictors
of homelessness.

Exercise E.3

The Gestation data set contains birth weight, date, and gestational period collected as
part of the Child Health and Development Studies. Information about the baby’s parents—
age, education, height, weight, and whether the mother smoked is also recorded.

library(mdsr)
glimpse(Gestation)

Observations: 1,236
Variables: 23
$ id <int> 15, 20, 58, 61, 72, 100, 102, 129, 142, 148, 164, 17...
$ pluralty <int> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5...
$ outcome <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ date <int> 1411, 1499, 1576, 1504, 1425, 1673, 1449, 1562, 1408...
$ gestation <int> 284, 282, 279, NA, 282, 286, 244, 245, 289, 299, 351...
$ sex <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ wt <int> 120, 113, 128, 123, 108, 136, 138, 132, 120, 143, 14...
$ parity <int> 1, 2, 1, 2, 1, 4, 4, 2, 3, 3, 2, 4, 3, 5, 3, 4, 3, 3...
$ race <int> 8, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 8, 7, 7, 4, 3...
$ age <int> 27, 33, 28, 36, 23, 25, 33, 23, 25, 30, 27, 32, 23, ...
$ ed <int> 5, 5, 2, 5, 5, 2, 2, 1, 4, 5, 5, 2, 1, 5, 2, 2, 7, 2...
$ ht <int> 62, 64, 64, 69, 67, 62, 62, 65, 62, 66, 68, 64, 63, ...
$ wt.1 <int> 100, 135, 115, 190, 125, 93, 178, 140, 125, 136, 120...
$ drace <fctr> 8, 0, 5, 3, 0, 3, 7, 7, 3, 0, 5, 0, 5, 0, 7, 7, 7, ...
$ dage <int> 31, 38, 32, 43, 24, 28, 37, 23, 26, 34, 28, 36, 28, ...
$ ded <int> 5, 5, 1, 4, 5, 2, 4, 4, 1, 5, 4, 1, 2, 5, 0, 0, 1, 2...
$ dht <int> 65, 70, NA, 68, NA, 64, NA, 71, 70, NA, NA, 74, NA, ...
$ dwt <int> 110, 148, NA, 197, NA, 130, NA, 192, 180, NA, NA, 18...
$ marital <int> 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ inc <int> 1, 4, 2, 8, 1, 4, NA, 2, 2, 2, NA, 2, 2, 2, 1, 1, 1,...
$ smoke <int> 0, 0, 1, 3, 1, 2, 0, 0, 0, 1, 3, 1, 1, 1, 0, 0, 1, 1...
$ time <int> 0, 0, 1, 5, 1, 2, 0, 0, 0, 1, 4, 1, 1, 1, 0, 0, 1, 1...
$ number <int> 0, 0, 1, 5, 5, 2, 0, 0, 0, 4, 2, 1, 1, 2, 0, 0, 5, 5...

1. Fit a linear regression model for birthweight (wt) as a function of the mother’s age
(age).

2. Find a 95% confidence interval and p-value for the slope coe�cient.
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3. What do you conclude about the association between a mother’s age and her baby’s
birthweight?

Exercise E.4

The Child Health and Development Studies investigate a range of topics. One study, in
particular, considered all pregnancies among women in the Kaiser Foundation Health Plan
in the San Francisco East Bay area. The goal is to model the weight of the infants (bwt,
in ounces) using variables including length of pregnancy in days (gestation), mother’s age
in years (age), mother’s height in inches (height), whether the child was the first born
(parity), mother’s pregnancy weight in pounds (weight), and whether the mother was
a smoker (smoke). The summary table below shows the results of a regression model for
predicting the average birth weight of babies based on all of the variables included in the
data set.

library(mdsr)
babies <- Gestation %>%
rename(bwt = wt, height = ht, weight = wt.1) %>%
mutate(parity = parity == 0, smoke = smoke > 0) %>%
select(id, bwt, gestation, age, height, weight, parity, smoke)

mod <- lm(bwt ~ gestation + age + height + weight + parity + smoke,
data = babies)

coef(mod)

(Intercept) gestation age height weight parityTRUE
-85.4729 0.4567 0.0116 1.1605 0.0540 -3.0726
smokeTRUE
-5.9976

Answer the following questions regarding this linear regression model.

1. The coe�cient for parity is di↵erent than if you fit a linear model predicting weight
using only that variable. Why might there be a di↵erence?

2. Calculate the residual for the first observation in the data set.

3. The variance of the residuals is 249.28, and the variance of the birth weights of all
babies in the data used to build the model is 335.94. Calculate the R2 and the
adjusted R2. Note that there are 1,236 observations in the data set, but there was
missing data in 62 of those observations, so only 1,174 observations were used to build
the regression model.

var(~residuals(mod))

[1] 257

var(~bwt, data = mod$model)

[1] 336

# rsquared(mod)



E.7. EXERCISES 485

4. This data set contains missing values. What happens to these rows when we fit the
model?

Exercise E.5

In 1966 Cyril Burt published a paper called “The genetic determination of di↵erences in
intelligence: A study of monozygotic twins reared apart.” The data consist of IQ scores for
[an assumed random sample of] 27 identical twins, one raised by foster parents, the other
by the biological parents.

Here is the regression output for using Biological IQ to predict Foster IQ:

library(mdsr)
library(faraway)
mod <- lm(Foster ~ Biological, data = twins)
coef(mod)

(Intercept) Biological
9.208 0.901

rsquared(mod)

[1] 0.778

Which of the following is FALSE? Justify your answers.

1. Alice and Beth were raised by their biological parents. If Beth’s IQ is 10 points higher
than Alice’s, then we would expect that her foster twin Bernice’s IQ is 9 points higher
than the IQ of Alice’s foster twin Ashley.

2. Roughly 78% of the foster twins’ IQs can be accurately predicted by the model.

3. The linear model is \Foster = 9.2 + 0.9⇥Biological.

4. Foster twins with IQs higher than average are expected to have biological twins with
higher than average IQs as well.

Exercise E.6

The atus package includes data from the American Time Use Survey (ATUS). Use the
atusresp dataset to model hourly wage as a function of other predictors in the dataset.
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